
  Hunt for the Quark Gluon Plasma

The Quark Gluon Plasma as an Unicorn.  
Experimentalists are the hunters, so....“All theorists are...”
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QCD at nonzero temperature

T ~ 0: Hadronic resonance gas. 
T → ∞: “perturbative” QCD Andersen, Leganger, Strickland, & Su, 1105.0514 

Near the critical temperature?
There must be an effective theory near Tc.

One example: matrix model of semi-QGP (near Tc)
Simple, closely related to lattice simulations

Moderate, not strong coupling (versus AdS/CFT...)

K. Kashiwa, S. Lin, V. Skokov & RDP, 1205.0545, 1206.1329, 1301.5344, 1301.7432 + 1306....

A. Dumitru, Y. Guo, Y. Hidaka, C. Korthals-Altes & RDP, 1205.0137, 1011.3820

RDP & Hidaka, 0803.0453, 0906.1751, 0907.4609, 0912.0940

RDP, ph/0608242, ph/0612191...
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What the lattice tell us

Hidden scaling of the pressure near Tc

(Resummed) perturbation theory
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Lattice: usual thermodynamics
“Pure” SU(3), no quarks.  Peak in (e-3p)/T4, just above Tc.  
Borsanyi, Endrodi, Fodor, Katz, & Szabo, 1204.6184

long tail?

↑ Tc 2.5 Tc ↑

e� 3p

T 4
⇥

Sunday, May 12, 13



Lattice: hidden scaling of the pressure
(e-3p)/T4 x (T2/Tc2) approximately constant near Tc: 
                                                 Meisinger, Miller, & Ogilvie, ph/0108009; RDP, ph/0608242

p(T ) ⇥ # T 2(T 2 � c T 2
c ) , c = 1.00± .01
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2 Tc↑↑ Tc ↑ 1.2 Tc

WHOT: Umeda, Ejiri, Aoki, 
Hatusda, Kanaya, Maezawa, 
Ohno, 0809.2842

T/Tc→

 Find: T > 1.2 Tc: constant => 
                   p(T) ~ # T2 

T < 1.2 Tc: transition region.  Narrow?

1

8

e� 3p

T 4

T 2

T 2
c

"
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Lattice: hidden scaling, redux

e� 3p

T 4

T 2

T 2
c

⇥

Borsanyi, Endrodi, Fodor, Katz,
& Szabo, 1204.6184 

10 Tc ↑↑ Tc

Tc→4 Tc:
For pressure, leading
corrections to ideality, T4, 
are not a bag constant, T0,
but ~ T2 - ? Take as given.
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Lattice: hidden scaling, 3 to 6 colors

Hidden scaling holds for N = 3, 4, 6:

Datta & Gupta, 1006.0938
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↑ Tc 4 Tc ↑T/Tc→

1
N2 � 1

e� 3p

T 2 T 2
c

"
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Lattice: hidden scaling, SU(N) in 2+1 dimensions
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T2-dependence in the trace of the energy-momentum tensor
Nt = 6 lattices

1
N2 � 1

e� 2p

T 3
"

Tc/T→

↑ 10 Tc ↑ 1.1 Tc↑ 2 Tc

p(T ) ⇡ # T 2(T � c Tc) , c ⇡ 1.

Caselle, Castagnini, 
Feo, Gliozzi, Gursoy,
 Panero, Schafer, 
1111.0580

In 2+ 1 dimensions, hidden scaling again ~ T2: not a mass term, ~ m2 T:
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Moderate coupling, down to Tc

QCD coupling is not so big at Tc, α(2πTc) ~ 0.3 (runs like α(2πT) )
HTL perturbation theory at NNLO: Andersen, Leganger, Strickland, & Su, 1105.0514

Assume: moderate
coupling down to Tc
versus AdS/CFT

e� 3p

T 4

T 2

T 2
c

⇥
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Ionization in QED plasma
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Neutral state{ atoms,
electric neutrality > atomic scales
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Completely ionized plasma{ plasma
with freely moving electric charges
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Partially ionized plasma{ partially ionized plasma with atoms and electric charges

VSkokov@bnl.gov Energy loss in semi QGP pA workshop 3 / 22
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Ionization in QCD plasma
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color neutrality > hadronic scale
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Completely ionized plasma{
perturbative QGP with freely moving
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Partially ionized plasma{ partial ionization of color: hadrons and color charges;
semi-QGP, nontrivial holonomy
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Z(N) symmetry and Polyakov Loops

T→ 
Tc ↑ 

<s>↑

T→ Tc ↑ 

<l>↑

< � >⇠ e�Ftest qk/T

� =
1
N

trLL = SU(N) matrix, trace = Polyakov loop, l:

< l > measures color ionization:

Confinement => no ionization of color,
=> < l >  = 0, T < Tc: Z(N) symmetric phase.
Color ionized above Tc, so 
< l >  ≠ 0, T > Tc, Z(N) broken

Z(N) symmetry essential to deconfinement in SU(N)

Svetitsky and Yaffe ’80: 
SU(3) 1st order because of Z(3) symmetry:
Eff. Lag. of loops has cubic terms, l3 + ( l*)3.

Does not apply for N > 3.  

So why is deconfinement 1st order for all N ≥ 3?

Ordinary spins, s: 
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Polyakov loops from Lattice: pure Glue, no Quarks
Lattice: (renormalized) Polyakov loop.  Strict order parameter
Three colors: Gupta, Hubner, Kaczmarek, 0711.2251.
Suggests wide transition region, like pressure, to ~ 4 Tc.
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L3

r

T/Tc

-
direct renormalization

QQ renormalization

T/Tc → 

<loop>↑

↑ ~ 4 Tc 

←1.0

← ~ 0.4

↑ Tc↑T=0

←  Confined  →← SemiQGP→ ←  “Complete” QGP  →   
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Lren(T)

HISQ/tree: No=6
No=8

No=12
stout, cont.

SU(3)
SU(2)

Loop with, and without, quarks

Bazavov &
Petreczky, 
1110.2160

Matrix Model: use same Tc with quarks.  Loop turns on below Tc.
Chiral transition is not tied to deconfinement.  Like lattice results:

                   Lattice ⇒
SU(3) with quarks 

⇐ Lattice, 
    SU(2) with no quarks

 ⇐ Lattice,
      SU(3) with no quarks

T→

<loop>↑

↓TcSU(2)TcSU(3)↓

TchiralQCD↑
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Z(3) symmetry and 't Hooft loops
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T >> Tc T ~ Tc T < Tc

Im l↑
Re l→

Lattice, A. Kurkela, unpub.’d: 3 colors, loop l complex.  
Distribution of loop shows Z(3) symmetry.  Cannot ignore Z(3)!

zInterface tension: box long in z.  
Each end: distinct but degenerate vacua.
Interface forms, action ~ interface tension:

T > Tc: order-order interface = ‘t Hooft loop:
             Measures response to magnetic charge
               Korthals-Altes, Kovner, & Stephanov, hep-ph/9909516

Also: if transition 1st order, order-disorder interface tension at Tc .

Z ⇠ e��intVtr
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Lattice: 't Hooft loops σ near Tc

Lattice: de Forcrand & Noth, lat/0510081. σ ~ universal with N
Semi-classical σ : Giovanengelli & Korthals-Altes ph/0102022; /0212298; /0412322: GKA ‘04
Above 4 Tc, semi-class σ ~ lattice.  Below 4 Tc, lattice σ <<  semi-classical σ.
Interface tensions small at Tc for all N
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 ⇐ lattice

�k

T 2 k(N � k)
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Other models for the "s" QGP,

From ~ Tc to ~ a few times Tc: "s" = strong? Strong coupling or...
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Other models
Massive quasiparticles: Peshier, Kampfer, Pavlenko, Soff ’96...Peshier & Cassing, ph/
0502138 Bratkovskaya + ...1101.5793  Castorina, Miller, Satz 1101.1255 + ....

p(T ) = #T 4 �m2 T 2 + . . .
Mass decreases pressure, so adjust
m(T) to fit p(T): three parameters.

Polyakov loops: Fukushima ph/0310121...Hell, Kashiwa, Weise 1104.0572

Veff (T ) ⇠ m2�⇤� + T log f(�⇤�)

m2 = T 4
3X

i=0

ai(Tc/T )i

AdS/CFT: Gubser, Nellore 0804.0434...Gursoy, Kiritsis, Mazzanti, Nitti, 0903.2859

Add potential for dilaton, φ, to fit pressure.
Only infinite N, two parameters V (⇥) ⇠ cosh(�⇥) + b ⇥2

Effective potential of Polyakov loops.
Potential has five parameters
1 variable, trace of (thermal) Wilson line, L
Matrix model for SU(N): N-1 eigenvalues of L.
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Quasiparticle Model

bt

1 2 3

a(t�1)�0.4

m(t)

tt = T/Tc→

m(t)↑

m
gluon

(T ) = a(t� 1)�0.41 + bt ; t = T/Tc

Castorina, Miller, Satz 1101.1255:  
Since peak in (e-3p)/T4 is near Tc, involved form for quasiparticle mass:
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Yet more models

Linear model of Wilson lines: Vuorinen & Yaffe, ph/0604100; 
   de Forcrand, Kurkela, & Vuorinen, 0801.1566; Zhang, Brauer, Kurkela, & Vuorinen, 1104.0572

Veff (Z) = m2 trZ†Z+  (detZ+ c.c.) + � tr(Z†Z)2 + . . .

Narrow transition region: Braun, Gies, Pawlowski, 0708.2413; 
    Marhauser & Pawlowski, 0812.1444; Braun, Eichhorn, Gies, & Pawlowski, 1007.2619

Deriving effective theory from QCD:
  Monopoles: Liao & Shuryak, ph/0611131, 0706.4465, 0804.0255, 0804.4890, 0810.4116,         
                          1206.3989; Shuryak & Sulejmanpasic, 1201.5624
  Dyons: Diakonov & Petrov, th/0404042, 0704.3181, 0906.2456, 1011.5636
  Bions: Unsal, 0709.3269; Simic & Unsal 1010.5515; Poppitz, Schaefer, & Unsal 1205.0290
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Matrix model: two colors
Just expand about constant, diagonal A0

Necessary to include physics of Z(N) vacua

Deconfining transition 2nd order for two colors

A. Dumitru, Y. Guo, Y. Hidaka, C. Korthals-Altes & RDP, 1205.0137
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Matrix model: SU(2)
Simplest possible approx.: model constant gauge transf.’s with constant A0 ~ σ3:

Point halfway in between: q = ½ , l = 0 .
Confined vacuum, Lc,  

Classically, A0cl has zero action: no potential for q.

Loop l real.  Z(2) degenerate vacua q = 0 and 1:

x xx Re l→
q = 0q = 1 q =

1
2

1 -1  0 

⇥ = cos(�q)

Lc =
✓

i 0
0 �i

◆

L(q) =
✓

ei�q 0
0 e�i�q

◆
Acl

0 =
⇡T

g
q �3 , �3 =

✓
1 0
0 �1

◆
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Potential for q, interface tension
Potential for q at one loop order: Gross, RDP, Yaffe, ‘81

Use Vpert(q) to compute 't Hooft loop:
                                               Bhattacharya, Gocksch, Korthals-Altes, RDP, ph/9205231.

) ⇥ =
4�2

3
p

6
T 2

p
g2

V
tot

(q) =
2�2T 2

g2

✓
dq

dz

◆2

+ V
pert

(q)

q !

Vpert(q) "

10x x

x Vpert(q) =
4⇡2

3
T 4 q2(1� q)2
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Cartoons of deconfinement
Consider:
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Transition second order
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q !

Veff = q2(1� q)2 � a q(1� q) , a ⇠ T 2
c /T

2
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Matrix model: N = 3

At infinite N, constant A0 is the "master field" for the semi-QGP

Matrix model: implicitly, expansion in large N

Effective Lagrangian? Only from the lattice

N.B.: matrix model gives a first order transition for all N ≥ 3

A. Dumitru, Y. Guo, Y. Hidaka, C. Korthals-Altes & RDP, 1205.0137
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Confining vacuum in SU(3)
Consider path along λ3 = diag(1,-1,0):
When q3 = 1:

Lc =

0

@
e2�i/3 0 0

0 e�2�i/3 0
0 0 1

1

A

trLc = trL2
c = 0

Lc is the confining vacuum, X:
“center” of space in λ3 and λ8 = diag(1,1,-2)

Move from deconfined vacuum, L = 1,
to the confined vacua, Lc, along red line:

-0.4 -0.2 0.2 0.4 0.6 0.8 1.0

-0.5

0.5

L = e2⇥iq3�3/3

Re l→

Im l↑

x

x

xx
Elements of e2π i/3 Lc same as those of Lc.  Hence

Lc
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Matrix model: details

Simplest ansatz: constant, diagonal A0:

At 1-loop order, perturbative potential

Aij
0 =

2⇥T

g
qi �ij , i, j = 1 . . . N

Assume non-perturbative potential ~ T2 Tc2:

For SU(N), Σj=1...N qj = 0.  Hence N-1 independent qj’s, # diagonal generators.
Two conditions: transition occurs at Tc, and pressure = 0 at Tc. Can do better!

Vpert(q) =
2�2

3
T 4

0

@� 4
15

(N2 � 1) +
X

i,j

q2
ij(1� qij)2

1

A , qij = |qi � qj |

V
non

(q) =
2⇡2

3
T 2T 2

c

(� c1
5

X

i,j

q
ij

(1�q
ij

)�c2
X

i,j

q2
ij

(1�q
ij

)2+
4

15
c3)+BT 4

c
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Matrix model: parameters from the lattice

Choose 2 free parameters to fit:
latent heat at Tc, (e-3p)/T4 at large T

Reasonable value for bag constant B:

e� 3p

8 T 4
"

↑ Tc 3Tc ↑T/Tc→

 ⇐ Lattice  

 ⇐ 2-parameter model

Tc = 270 MeV, B~ (262 MeV)4

Latent heat, lattice:
BPK: Beinlich, 
Peikert, Karsch 
lat/9608141
DG: Datta, Gupta 
1006.0938

c1 = .88, c2 = .55, c3 = .95
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Matrix model: ‘t Hooft loop vs lattice
Matrix model works well:
Lattice: de Forcrand, D’Elia, & Pepe, lat/0007034;  de Forcrand & Noth lat/0506005
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Matrix model: Polyakov loop vs lattice
Renormalized Polyakov loop from lattice nothing like Matrix Model
Model: transition region narrow, to ~ 1.2 Tc. Lattice: loop wide, to ~ 4.0 Tc.
Can alter parameters to fit Polyakov loop; do not fit latent heat with 2 parameters

 ⇐ lattice

 ⇑ 0-parameter

1-parameter ⇓

Lattice: Gupta, Hubner,
and Kaczmarek,  0711.2251.
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⇥�⇤ �
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Heavy quarks in the matrix model

Position of the deconfining critical endpoint

Kashiwa, RDP, & Skokov 1205.0545
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Adding heavy quarks

Quarks add to the perturbative q-potential, 

Plus terms ~ e-2m/T Re tr L2, etc.  Quarks act like background Z(3) field.
Heavy quarks wash out deconfinement at Deconfining Critical Endpoint, DCE.

For the DCE, first term works to ~ 1% for all quantities.  

Add Vqkpert(q) to the gluon potential, and change nothing else, same Tc .

Most straightforward approach.  Naturally, TDCE < Tc.

N.B.: Quarks generate v.e.v for 〈loop〉 below Tc, and so become sensitive to
details of pressure in the confined phase.  Have to modify the potential by hand to 
avoid unphysical behavior (negative pressure)

V qk
pert(q) = � tr log( 6Dcl

+m) ⇠ �
p
2

�3/2
T 5/2m3/2

e

�m/T
Re trL+ . . .
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matrix model

polynomial PL

matrix model w/ bag

Deconfining critical endpoint in matrix model
Matrix model:                TDCE ~ 0.991 Tc   mDCE ~ 2.4 GeV heavy
Lattice:                           TDCE ~ 0.998 Tc   mDCE ~ 2.2 GeV
               hopping parameter expansion: Fromm, Langelage, Lottini, Philipsen, 1111.4953  

Polyakov loop models:  TDCE ~ 0.90 Tc     mDCE ~ 1 GeV  <<  lattice result
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Matrix model: prediction for interaction measure

0 2 4 6 8 10
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3

4 matrix model
matrix model w/ B
logarithmic PL
polynomial PL

T / Tde

(ε
-3

p)
/ T

4

For three flavors, matrix model gives two bumps in (e-3p)/T4 
One just above TDCE from gluons, another at ~ 4 TDCE, from quarks.  
               Due to heavy mDCE . Does not happen for models with light mDCE

Sunday, May 12, 13



Matrix model for SU(∞)

Novel phase transition, Gross-Witten-Wadia 

At infinite N, transition has aspects of both first and second order

E.g.: all interface tensions vanish at Tc

RDP & Skokov, 1206.1329; Lin, RDP, & Skokov, 1301.7432
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Use eigenvalue density, ρ(q): A0i ~ qi, i = 1...N, discrete sum Σi => ∫ dq ρ(q) 

Matrix model at infinite N

Vn(q) =

Z
dq

Z
dq0 ⇢(q) ⇢(q0) |q � q0|n(1� |q � q0|)n

Matrix model: V1 and V2.  Take derivatives of equation of motion, at Tc solution

Solution similar when T ≠ Tc, ρ(q) = 1 + b cos(d q).

Consider SU(N) on femtosphere: spatial sphere so small that coupling is small 
Sundberg, th/9908001; Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk, th/0310285; 
                   Dumitru, Lenaghan, RDP, ph/0410294
Effective theory for the spatially static model includes Vandermonde determinant

At Tc, eigenvalue density for the two matrix models are identical: not for T ≠ Tc.

⇢(q) = 1 + cos(2⇡ q) , q : �1/2 ! 1/2

#|
Z

dq ⇢(q) e2⇡i q|2 +
Z

dq

Z
dq0 ⇢(q) ⇢(q0) log |e2⇡iq � e2⇡iq

0
|
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Gross-Witten-Wadia transition at infinite N
Solution at N=∞: “critical first order” transition -  both first and second order
Latent heat nonzero ~ N2.   And specific heat diverges, Cv ~ 1/(T-Tc)3/5

Potential function of all tr Ln, n = 1, 2....  But at Tc+, only first loop is nonzero:
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Remnants of GWW at finite N
Solve matrix model numerically at finite N.  Find two minima, at 0 and ~ 1/2.
Standard first order transition, with barrier & so interface tension, between them
Barrier disappears at infinite N: so interface tensions vanish at infinite N
Below: potential /(N2-1), versus tr L .

Veff (`)

N2 � 1
"

⇥�⇤ �
0↑ ↑ 1/2
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GWW at finite N: interface tensions small at Tc

Consider maximum of previous figure, versus number of colors:
increases by ~ 2 from N = 3 to 5, then decreases monotonically as N increases
Perhaps: non-monotonic behavior of order-disorder interface tension with N?

↵od

N2T 3
c

= .014� .10

N2

Lattice: order-disorder
interface tension αod at Tc:
Lucini, Teper, Wegner, lat/0502003

Coefficients small, χ2 large, ~ 2.8.
Sign of non-monotonic αod /N2?
N.B.: 't Hooft loops small near Tc
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GWW at finite N: specific heat

See increase in specific heat only very near Tc, ~ .1 %, for very large N > 40

T/Tc→

Cv

N2T 3
"
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Roberge-Weiss transitions

Value of an imaginary quark chemical potential, φ:

How to measure the 't Hooft loop with dynamical quarks

Phase diagram in the T - φ plane for heavy quarks

Kashiwa & RDP, 1301.5344
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Quarks with imaginary chemical potential, μ = 2 π i φ T. 
Under global Z(N) rotation:

Roberge-Weiss symmetry

q(~x, 1/T ) = e2⇡i(�+1/N)
q(~x, 0)

With quarks, and without φ, no Z(N) symmetry.
With φ, Roberge-Weiss symmetry: � ! �+
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θ / (π/3)

q = 0

q = 1/3

q = 2/3

Periodicity occurs because of a phase transition,
of first order, at φRW = 1/(2N) .
Jump from A0 = 0, just left of φRW , to 

just right of φRW .   
Boundary conditions identical to Z(N) interface.
Interface tension for 1st order transition at
φRW is the 't Hooft loop - with dynamical quarks.

A0 =
2⇡T

g

1

N
diag(1...1,�(N � 1))

3/2 � !
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m = mdce

Phase diagram for RW transitions: high mass
Above only for high T.  Near Tc, use matrix model for heavy quarks
Consider m = mDCE,  at Deconfining Critical Endpoint

� !

T

Tc
"

←Roberge-Weiss, 
    1st order

↑      1st order lines    ↑
Mix deconfinement & RW

Deconfining critical endpoints

For high T, line of 1st order RW 
transitions at φRW = 1/6:
interface tension = 't Hooft loop

φ = 0: 2nd order trans. in T, DCE

φRW > φ > 0: 
Two lines of 1st order trans.'s
Mix deconfinement & RW
Jump in A0 not Z(3) transform, so
interface tension not 't Hooft loop
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Phase diagram for RW transitions: intermediate mass
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mtri < m < mdce

    ↑  1st order lines  ↑
    Mix deconf. & RW

Deconfining endpoints

←Roberge-Weiss, 
    1st order

� !

T

Tc
"

mdce > m > mtri: lines of 1st order transitions shrink in φ.
Again, interface tension = 't Hooft loop only for φRW = 1/6
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Phase diagram for RW transitions: low mass
At m = mtri, 1st order lines for φ ≠ φRW merge into φRW, giving tri-critical point
For m < mtri, line of RW transitions ends in an ordinary critical endpoint
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←Roberge-Weiss, 
    1st order

←tri-critical 
    endpoint

� !

T

Tc
"

3 degenerate flavors:

Matrix model:
mtri ~ 6.4 Ttri 

Lattice:
mtri ~ 6.7 Ttri 

Fromm, Langelage, 
Lottini, Philipsen, 
1111.4953
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 T

4

T / Td

(a)

φ = 1/6 − ε

φ = 1/6 + ε

Thermodynamics of Roberge-Weiss transition

p

T 4
"

T/Tc !

Use matrix model to compute at m=mdce , φ = φRW = 1/6.
Pressure even in φ, so doesn't change

φ = φRW = 1/6
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Quark number density at RW transition
Use matrix model to compute at mdce , φ = φRW = 1/6.
(Imaginary) part of quark number density odd in φ, so flips sign

T/Tc !

Im(nq)

T 3
"

φ = φRW = 1/6-

φ = φRW = 1/6+
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Interaction measure at RW transition
Use matrix model to compute at mdce , φ = φRW = 1/6.
Energy density jumps at transition.  Interaction measure negative to right of φRW 
Unphysical, occurs as chemical potential ~ T is imaginary
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T/Tc !

φ = φRW = 1/6+

φ = φRW = 1/6-
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Straightforward to add light quarks with chiral effective lagrangian. 
         
              In the matrix model, Tdeconfinement ≠ Tchiral : Tchiral new parameter

Standard kinetic theory: 
To obtain small shear viscosity η, as η ~ 1/g4 , coupling must be large
Then for radiative energy loss, qhat ~ g2 is large

             Majumder, Muller, & Wang, ph/0703082; Liao & Shuryak, 0810.4116...

Matrix model: η small when the loop is (Y. Hidaka & RDP)
          σ ~ loop2, but ρ = density ~ loop2 T3:

          Collisional energy loss ~ ρquark ~ loop , small near Tc.

      Presently computing radiative energy loss, production of photons, dileptons...

Experiment? Both RHIC & LHC are mainly (all?) in the s-QGP.

� � ⇥2

⇤
� ⌅2

Future work
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